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Executive Summary 

Objectives: 

 

The over-arching objective was to develop and report on the data, methods and results of a 

proof-of-concept study to identify wetlands at risk by evaluating wetland hydroperiod change in 

the Upper Columbia River Floodplain. See Appendix 1 for a detailed account of the research 

undertaken. The work is also documented in: 

 

a) Journal Article: Hopkinson C, Fuoco B, Grant T, Bayley SE, Brisco B, MacDonald R. 

Wetland Hydroperiod Change Along the Upper Columbia River Floodplain, Canada, 1984 

to 2019. Remote Sensing. 2020; 12(24):4084. https://doi.org/10.3390/rs12244084  

b) YouTube video abstract: https://youtu.be/kteXzzx4lWg 

Hydroperiod Construction & Change: 

Increasing temperatures and depleting snowpack in the mountainous Kootenay Region of British 

Columbia, Canada is expected to impact floodplain wetland extent and function along the Columbia 

River. The objective of this study is to determine floodplain hydroperiod for a section of the Upper 

Columbia River wetlands complex using time series satellite image observations and binary open 

water mask extraction. A mid pixel resolution (30m) optical satellite image time series of 60 clear 

sky scenes from the Landsat Thematic Mapper (TM) and Operational Land Imager (OLI) sensors 

were used to map temporal variations in floodplain open water wetland extent during the April to 

October hydrologically active season from 1984 to 2019 (35 years). The hydroperiod from the first 

30 scenes (T1: 19 years) was compared to the second 30 (T2: 16 years) to identify changes in the 

permanent and seasonal open water bodies. The seasonal variation in open water extent and duration 

were similar across the two time periods but the permanent water body extent diminished by ~16% 

(or ~4% of total floodplain area). A simple linear model (r2 = 0.87) was established to predict 

floodplain open water extent as a function of river discharge downstream of the case study area.  

Extending the hydroperiod forwards and backwards: 

Four years of Landsat Multi-Spectral Scanner (MSS) data from 1992 to 1995 (12 scenes) were 

examined to evaluate the feasibility of extending the hydroperiod record back to 1972 using lower 

resolution (60m) archive data. While the MSS hydroperiod produced a similar pattern of open water 

area to duration to the TM/OLI hydroperiod, the open water extents were lower due to the reduced 

resolution. While MSS could potentially extend the TM/OLI hydroperiod a further 12 years to 1972, 

this was not performed as the loss of features like the river channel diminished its value for change 

detection purposes.  Radarsat 2 scenes from 2015 to 2019 were examined to evaluate the feasibility 

of continued mountain valley hydroperiod monitoring using higher spatial and temporal resolution 

sensors like the Radarsat Constellation Mission (RCM). Only eight HH ascending track Radarsat 2 

scenes were suitable for floodplain hydroperiod development, as other polarizations contained too 

much backscatter noise or orbital tracks were unable to observe the full valley floor extent in this 

high relief environment. However, from the small sample set, the hydroperiod pattern of open water 

https://doi.org/10.3390/rs12244084
https://youtu.be/kteXzzx4lWg
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extent to duration was similar to the longer Landsat time series and possessed greater feature detail, 

suggesting that the higher temporal resolution of RCM will be suited to mountain floodplain 

inundation monitoring and wetland hydroperiod development. 

 

Identifying Wetlands at Risk: 

From the Landsat hydroperiod analysis, any contiguous wetland area displaying an area > 1Ha that 

changed from permanent water body (every April to October image sampled displayed open water) 

during 1984 – 2002 to seasonally inundated (some images showed no open water) during 2003 to 

2019 was assumed to be at greater risk than open water areas considered permanent throughout the 

entire time series. By these criteria, 11 open water wetlands in the floodplain between Brisco and 

Spillimacheen have displayed some reduction in ‘permanence’ over the 35 year period examined. 

The centres of these open water wetlands are illustrated in Figure 1 and the UTM z11 co-ordinates 

are presented in Table 1. The location, shape and extent of these areas along with their proximity 

to unchanging permanent water bodies is illustrated in Appendix 1 / Figure 6.   

 

Table 1. Easting and Northing coordinates of open wetlands assumed to have transitioned from a primarily 

permanent water body state to a seasonally inundated state from during the 1984 to 2019 time period. 

Easting / Northing 

UTM Zone 11 

546075E / 5636670N 

546347E / 5636374 N 

545240E / 5635619N 

545646E / 5635124N 

546848E / 5633408N 

547441E / 5632937N 

547944E / 5632520N 

547520E / 5632560N 

549091E / 5632278N 

549242E / 5632079N 

548918E / 5631959N 
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Figure 1. Each marker illustrates a contiguous area of > 1Ha that was observed to be open water in every 

image (i.e. assumed permanent) during the 1984 to 2002 period but for which the same area became seasonally 

inundated after 2003.  This suggests a decadal-scale drying trend for these particular open water wetlands. 
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Next steps; a wetland vulnerability framework: 

The Landsat-based time series approach evaluated above (detailed in Appendix 1) provides a 

general indication of vulnerability based on a long term historical change trend; i.e. ponds that were 

‘permanent’ in the early time series but became ‘seasonally inundated’ in the latter. This should 

illustrate pond areas that are now less likely to remain inundated for an entire year. This does not 

address specific instances of drying up in any given low flow / drought year, though as the Landsat 

record is insufficiently dense in time for such a fine-grained temporal analysis. Moving forwards 

the newly implemented Radarsat Constellation mission program launched in 2019 allows imaging 

repeats on the order of 4 days and through clouds or at night, which would allow observations of 

pond drying due to seasonal and interannual droughts.  

In the absence of such an observational record, we could use the river runoff observations 

downstream on the Columbia and regression model (Appendix 1 Figure 7) to estimate floodplain 

inundation for any given observed or forecasted discharge. Further effort is needed to extend this 

modeling to individual wetland ponds and this could be facilitated using further detailed observation 

of pond extent to river discharge or using hydraulic water level simulations across the floodplain. 

Such efforts go well beyond what was possible within the feasibility study time frame and budget 

but can be the source of future collaborative research. A graphical summary of a potential integrated 

remote sensing and hydrological modeling wetland vulnerability framework is presented in Figure 

2. 
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Figure 2. A potential integrated remote sensing and hydrological modeling wetland vulnerability monitoring 

framework that can be piloted over the Columbia Wetland. 
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Appendix 1 

 

Journal paper published in Remote Sensing that documents the Remote Sensing-based wetland 

hydroperiod construction and change analysis. 

 

 

 

Hopkinson C, Fuoco B, Grant T, Bayley SE, Brisco B, MacDonald R. Wetland Hydroperiod 

Change Along the Upper Columbia River Floodplain, Canada, 1984 to 2019. Remote Sensing. 

2020; 12(24):4084. https://doi.org/10.3390/rs12244084  
  

https://doi.org/10.3390/rs12244084
https://youtu.be/kteXzzx4lWg
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Article 

Wetland Hydroperiod Change along the Upper 

Columbia River Floodplain, Canada, 1984 to 2019 

Chris Hopkinson 1,*, Brendon Fuoco 1, Travis Grant 1, Suzanne E. Bayley 2, Brian Brisco 3 and Ryan 

MacDonald 1,4 

1 Department of Geography and Environment, University of Lethbridge, 4401 University Drive, Lethbridge, AB T1K 

3E3, Canada; brendon.fuoco@uleth.ca (B.F.), grantt@uleth.ca (T.G.);  

ryan.macdonald@machydro.ca (R.M.) 
2 Department of Biological Sciences, University of Alberta,116 St & 85 Ave, Edmonton, AB T6G 2R3, Canada; 

s.bayley@ualberta.ca 
3 Natural Resources Canada, Government of Canada, 560 Rochester St., Ottawa, ON K1A 0E4, Canada; 
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4 MacDonald Hydrology Consultants Ltd., 7082 Gold Creek Road, Cranbrook, BC V1C 6Z4, Canada 

* Correspondence: c.hopkinson@uleth.ca; Tel.: +1-403-332-4856 

Received: 30 October 2020, Accepted: 9 December 2020, Published: date 

Abstract: Increasing air temperatures and changing hydrological conditions in the mountainous Kootenay 

Region of British Columbia, Canada are expected to affect floodplain wetland extent and function along 

the Columbia River. The objective of this study was to determine the seasonally inundated hydroperiod 

for a floodplain section (28.66 km2) of the Upper Columbia River wetlands complex using time series 

satellite image observations and binary open water mask extraction. A mid pixel resolution (30 m) optical 

satellite image time series of 61 clear sky scenes from the Landsat Thematic Mapper (TM) and Operational 

Land Imager (OLI) sensors were used to map temporal variations in floodplain open water wetland extent 

during the April to October hydrologically active season from 1984 to 2019 (35 years). The hydroperiod 

from the first 31 scenes (T1: 18 years) was compared to the second 30 (T2: 16 years) to identify changes in 

the permanent and seasonal open water bodies. The seasonal variation in open water extent and duration 

was similar across the two time periods but the permanent water body extent diminished by ~16% (or 

~3.5% of the floodplain). A simple linear model (r2 = 0.87) was established to predict floodplain open water 

extent as a function of river discharge downstream of the case study area. Four years of Landsat Multi-

Spectral Scanner (MSS) data from 1992 to 1995 (12 scenes) were examined to evaluate the feasibility of 

extending the hydroperiod record back to 1972 using lower resolution (60 m) archive data. While the MSS 

hydroperiod produced a similar pattern of open water area to duration to the TM/OLI hydroperiod, small 

open water features were omitted or expanded due to the lower resolution. While MSS could potentially 

extend the TM/OLI hydroperiod record, this was not performed as the loss of features like the river channel 

diminished its value for change detection purposes. Radarsat 2 scenes from 2015 to 2019 were examined to 

evaluate the feasibility of continued mountain valley hydroperiod monitoring using higher spatial and 

temporal resolution sensors like the Radarsat Constellation Mission (RCM). From the available horizontal 

transmit/receive (HH) single polarization sample set (8 scenes), the hydroperiod pattern of open water 

extent to duration was similar to the longer Landsat time series and possessed greater feature detail, but it 

was significantly reduced in seasonal inundation area due to the systematic omission of open water areas 

containing emergent vegetation. However, accepting that differences exist in sensor-based hydroperiod 

attributes, the higher temporal resolution of RCM will be suited to mountain floodplain inundation 

monitoring and open water hydroperiod analysis. 

Keywords: Landsat; synthetic aperture radar (SAR); lidar; floodplain wetlands; hydroperiod; water mask; 

time series; Columbia River; climate change 
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1. Introduction 

1.1. Floodplain Wetland Vulnerability 

Wetland habitats have been destroyed globally due to human disturbance, agriculture, dams, urban 

and industrial development, and more recently due to climate change [1–3]. Wetland ecosystems provide 

critical ecosystem services, including groundwater recharge, flood prevention, reduced erosion, water 

purification and filtering, carbon storage and habitats for wildlife [4–6]. Floodplain wetlands are maintained 

by the predictable advance and retraction of floodwaters across the floodplain [7,8]. Floodplain marsh 

wetlands tend to be dominated by grasses and herbaceous plants while underlain by poorly drained mineral 

soils, often resulting in both permanently and seasonally inundated water bodies. Floodplain water levels 

and extents in mountain regions can fluctuate frequently and rapidly as a result of snowmelt and rainfall 

events [9,10] and thus initiate a range of biological responses [11–14]. With projected climate change 

indicating altered temperature and precipitation trends across many regions, changes in wetland and 

floodplain inundation extent are likely [6,15–18]. There is a need, therefore, for further research into wetland 

mapping, inventory and monitoring to enhance our understanding of long-term wetland change and 

vulnerability [19]. 

The Columbia River spans 2000 km (1240 miles) [20], from the Rocky and Kootenay Mountains of 

British Columbia (BC), Canada to Washington State, USA, eventually joining the Snake River to form the 

border between Oregon and Washington prior to discharging into the Pacific Ocean. The flow of the 

Columbia River is important in sustaining the rich biodiversity found along the entire water system, 

including the wetlands of the Upper Columbia River floodplain, which are maintained by seasonal 

inundation from overbank flooding during seasonal spring snowmelt or large rainfall events over the 

mountainous headwaters. 

Warmer air temperatures associated with climate change are expected to alter precipitation and 

evapotranspiration patterns in the northern hemisphere [21]. Such changes may impact wetland hydrology 

by reducing available surface and groundwater sources [15–17,22], which may further stress ecosystem biota 

and water quality [23]. Brahney et al. [24] have detected a 13% decline in Columbia River flows at Nicholson 

in recent decades, with much of the decrease during August [25]. Regional climate change scenarios project 

average annual air temperature increases throughout the Columbia headwaters (i.e., 2 °C by 2050 [26], 3–4 

°C by 2100 [27,28]), with increased evaporation rates and decreased alpine glacial melt runoff contributions 

[29–31]. Although climate change scenarios project greater temperature increases in summer months [32], 

increasing annual temperatures are expected to reduce the annual snowfall amounts at higher elevations 

[27], which are critical to late-season streamflow. If more precipitation occurs as rainfall, this may shift snow 

accumulation- and melt-dominated watersheds towards more rainfall runoff-dominated [33–36]. Altered 

temperature and precipitation regimes can result in earlier snowmelt and spring peak flows [33–36], 

possibly changing the timing and duration of overbank flooding and wetland hydroperiod (i.e., the period 

of inundation) [28]. Preliminary results by MacDonald and Chernos [28] suggest that overbank flooding has 

declined in the wetlands. Some wetland basins flood 2–3 m deep during peak flows, while more isolated 

wetlands may only receive 50 cm or less. Hence, some wetlands flood less and there are concerns that 

wetlands which should retain standing water over the winter may be particularly vulnerable to climate 

warming. Studies have shown that alterations to wetland habitat impact amphibian [1,37–39], waterfowl 

[40–42] and other aquatic and vegetation species [43–46], and recovery strategies have had mixed results 

[47]. Understanding wetland hydroperiod response to climate change (past and future) is therefore crucial 

to understanding overall wetland ecosystem vulnerability.  
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1.2. Remote Sensing of Water Extent and Hydroperiod 

Mapping changing open water extent or hydroperiod over entire seasons or periods of years requires 

temporally frequent and spatially explicit observations that can only be practically achieved through 

satellite remote sensing [19,48–51]. NASA’s Landsat mission has the longest almost continuous record of 

high-resolution (<100 m pixel resolution) optical satellite image data stretching back to 1972 with the Multi-

Spectral Scanner (MSS) sensor, which was operational until 1998 (26 years). However, the higher resolution 

Thematic Mapper (TM) and now Optical Land Imager (OLI) sensors provide a still active and therefore 

longer record of observation from 1984 to the present day (>36 years). These long time series lend themselves 

to evaluating changes in water body extent and hydroperiod mapping. Several studies have demonstrated 

optical water mask extraction using spectral index or normalized ratio approaches [52–55]. For example, the 

difference between the Normalized Difference Vegetation Index (NDVI) and the Modified Normalized 

Water Index (MNDWI) has been found effective for water mask extraction as it effectively removes 

interference, enhances the differentiation between land and water and is well suited for areas of complex 

topography. Due to the orbital repeat of 16 days and image occlusions during periods of cloud cover, 

however, Landsat images are unsuited to hydroperiod mapping during a single year.  

Due to its active sensing capability at microwave wavelengths, synthetic aperture radar (SAR) imaging 

is ideal for mapping surface water extent [56–59] at any time of day or night and through cloud cover. The 

specular reflectance of water causes little backscatter to the sensor [60], allowing water boundary extraction 

algorithms to be developed using a variety of approaches [59,61–63]. Airborne lidar (light detection and 

ranging) is also effective at mapping wetland water bodies [64] and features [65,66] at very high resolutions. 

Data fusion using multiple remote sensing sources has resulted in improved discrimination of terrain, 

vegetation and water body information to enhance wetland classification and hydrologic connectivity 

[65,67]. For example, many studies have shown that lidar terrain information can play a key role in the 

quality control of water masks derived from other sensing technologies by identifying areas that cannot be 

inundated by virtue of their elevation or terrain morphology [49–51,68]. 

1.3. Objectives 

The underlying premise for this study is that if changes in floodplain wetland hydroperiod can be 

discerned and related to historical changes in regional hydroclimatic conditions, then potential future 

climate change impacts on wetland and water body permanence can be inferred. As part of a broader 

wetland vulnerability assessment framework, therefore, the primary objective is to characterize the 

multidecadal wetland complex hydroperiod for a section of the Upper Columbia River floodplain from the 

Landsat TM and OLI archive from 1984 to 2019. This 36-year hydroperiod can be divided into an early and 

late period so that any change in the seasonal extent and permanence of open water wetlands can be 

evaluated. Underlying drivers of any observed shift in hydroperiod behaviour will be investigated by 

extracting nearby meteorological norms for the two periods and testing for a relationship between 

downstream river flow and individual open water mask extents.  

A sub-objective is to evaluate the potential for extending the hydroperiod backwards using lower 

spatial resolution archive Landsat MSS data and forwards through continued monitoring using high 

temporal and spatial resolution SAR imagery, such as is becoming available through the Radarsat 

Constellation Mission (RCM) [69]. The 4-day repeat cycle of RCM will provide high temporal resolution 

time series which will facilitate hydroperiod determination. 

2. Materials and Methods 

2.1. Study Area 
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The case study wetland complex is found along a ~17 km stretch of the Upper Columbia River 

floodplain between Brisco and Spillimacheen (50°50′N, 116°19′W) in British Columbia (BC), Canada (Figure 

1). The floodplain area is 28.66 km2 with the valley bottom elevation from the upstream to downstream end 

ranging from 789 to 785 m a.s.l. (hydraulic gradient of 0.02%). Nestled between high mountain ranges (up 

to ~3500 m a.s.l.), including the Rocky Mountains to the east and the Columbia and Purcell Mountains in the 

west, the deep post-glacial valley is fed by multiple tributaries [28]. Surrounded by forests, agriculture, 

glaciers and park land, the Upper Columbia River valley hosts many wetland complexes which are often 

hydrologically disconnected from the main channel and considered potentially vulnerable to a warming 

climate [27,28].  

 

Figure 1. Location of the Upper Columbia River study area in British Columbia, Canada stretching from 

Brisco to Spillimacheen (left). Red box within the satellite image base map (right) illustrates approximate 

location and extent of the study floodplain upstream of Nicholson. 

Summer daytime high air temperatures range from 14 to 19 °C, with winter daytime high temperatures 

of 4–8 °C. Lower elevations receive less precipitation (325–471 mm/year) than higher elevations (991–1531 

mm/year), where the majority of precipitation occurs during winter months [28]. The Columbia River is 

gauged continuously by the Water Survey of Canada at Nicholson, ~65 km downstream from the case study 

site, where the upstream drainage area is ~6660 km2. During the 1984 to 2019 study period, annual peak 

flows tended to occur during June and July (Figure 2), ranging from 282 (2001) to 743 m3s−1 (2002). Annual 

base flow conditions are relatively stable between 25 and 35 m3s−1 and tend to be present from late October 

through to early April. Floodplain wetlands connected to the mainstem of the Columbia River experience 

water level and extent fluctuations as river flow rises and falls, while more isolated (less connected) wetland 

water bodies experience level and extent changes as a result of overbank flooding, slow drainage and loss 

to evapotranspiration [28,43]. 
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Figure 2. Columbia River daily average discharge statistics for Nicholson ~65 km downstream of the study 

site during the April to October hydrologically active season from 1984 to 2019. 

2.2. Data Sources 

Daily discharge data (Figure 2) for the Columbia River at Nicholson are publicly available and were 

downloaded from the Environment and Climate Change Canada (ECCC) online data portal for the years 

1984–2019. Similarly, air temperature and precipitation data for Cranbrook BC (~100 km south of the study 

site) are publicly available from the ECCC online portal and were mined to provide an index of changing 

climate conditions within the study area. While some distance away, data from Cranbrook were used in this 

study due to the uninterrupted data availability throughout the 1984 to 2019 period. A 1 m lidar digital 

elevation model (DEM) was obtained over the Columbia River floodplain by the BC Province and made 

available to this study for orthorectification of the SAR images, to define the spatial extent of the floodplain 

and thus constrain the extent of the floodplain water masks. Floodplain extent was manually digitized from 

the DEM using the elevation contours and break of slope between the flat valley bottom and the surrounding 

mountain slopes. Given that the DEM resolution is much higher than any of the image data sources used, 

any errors in digitization will have a negligible impact on water mask quality control. 

The publicly accessible USGS EarthExplorer data archive was mined for all cloud-free Landsat TM and 

OLI scenes over the study site (Path 43, Row 25) during the hydrologically active season from April to 

October 1984 to 2019. In total, 61 scenes (49 TM and 12 OLI) met the criteria and were downloaded at 30 m 

pixel resolution as a Collection Level-1 GeoTIFF data product. Of the 35 years sampled, only five years 

displayed no suitable scenes: 1993, 1999, 2010, 2012 and 2013. For the years of available data, there was an 

average of two images a year, with a maximum of five in 1994, followed by four in years 2003, 2007, 2016 

and 2017. Single scenes were captured during 1984, 1985, 1989, 1990–1992, 1995–1996, 2000, 2006, 2011, 2014. 

The frequency of suitable images by month from April to October was 3, 3, 4, 16, 20, 14, 1, respectively, with 

the highest sample frequency during mid to late summer flow conditions and the lowest frequencies close 

to the early and late season baseflow periods. An additional 12 Landsat MSS scenes were acquired for 1992–

1995, where the imaging frequency was, respectively 4, 1, 5, 2 for each of the years.  

Recent Radarsat 2 images were obtained from the Canada Centre for Mapping and Earth Observation 

(CCMEO) of Natural Resources Canada. Of all Radarsat products available, only single HH polarization 

(Horizontal transmit/Horizontal receive) descending orbit images in Single Look Complex (SLC) format 

were used, as the high relief terrain surrounding the study area caused shadowing in ascending track scenes 

and excessive noise in scenes with a vertical polarization component. Only 8 suitable images were available 

for 2015 to 2019, with, respectively, 1, 4, 2, 0, 1 images for each of the years. Radarsat 2 extra-fine products 

have a 3 m × 3 m resolution. Of the active season months, 6 of the 7 were sampled at least once, with 2 images 

each for April and July and no image for September.  
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2.3. Image-Based Water Mask Extraction 

The workflow for optical and SAR water mask and hydroperiod construction is summarized in Figure 

3. For the Landsat images, an index-based threshold water mask was generated using the NDVI and 

MNDWI indices [55]. Images were radiometrically and atmospherically corrected using the Radiometric 

Calibration and FLAASH tools in ENVI. Following the Landsat TM band number convention, NDVI layers 

were created in ENVI using the near infrared (NIR) (4) and red (3) bands in the band math tool as follows: 

NDVI =  
(band 4 − band 3)

(band 4 + band 3)
 (1) 

The MNDWI layers were created using the green (2) and the short-wave infrared (SWIR) (5) bands 

using the following equation:  

MNDWI =  
(band 2 − band 5)

(band 2 + band 5)
 (2) 

(Note, for Landsat OLI, the NDVI calculation uses band 5 and band 4, the MNDWI band 3 and 6, and 

for Landsat MSS, change the band order to green (1), red (2), NIR (3) and SWIR I (4)). The MNDWI layer 

was then subtracted from NDVI to provide an image with values ranging between +2 and −2. The index 

difference images were then passed through a majority filter with a kernel set to the nearest four orthogonal 

pixels to reduce pixel-level noise. Chosen water threshold values ranged between 0.15 and 0.19 and were 

trained for each image over known permanent water bodies throughout the floodplain and manually 

applied to produce a binary mask where a value of 1 signified water and 0 everything else. The mask was 

then clipped to the floodplain extent.  

SAR-derived surface water masks were created following the intensity (dB) thresholding routine and 

filter settings of Montgomery et al. [51]. Radarsat 2 images were orthorectified using PCI Ortho Engine (PCI 

Geomatica) and then imported into PCI Model Builder, where the PSIOInterp tool converted pixel intensity 

to decibel values. These images were then run through a 3 × 3 average (mean) filter to reduce speckle and a 

5 × 5 FGAMMA (gamma maximum-a-posteriori (MAP)) adaptive filter to preserve edges, crucial for water 

extraction. Both outputs were then manually inspected, and a threshold was trained over known permanent 

water bodies for each individual image. The range of pixel thresholds was ±14–17 dB, with negative values 

for the FGAMMA threshold and positive values for the average (mean) filter. Water values were converted 

to 999 for both images and the two images were then added together. Outputted pixel values ranged from 

0 to 1998, with 1998 values identified as water by both filters. This image was then added to the original 

FGAMMA-filtered image and water pixels assigned a value of 1 and everything else 0. The binary mask was 

passed through a 3 × 3 majority (or modal) filter to reduce noise and a 9 × 9 FGAMMA filter to preserve 

edges. As with the optical processing steps, the final water masks were then clipped to the floodplain extent.  



13 

 

 

Figure 3. Flow diagram of (dB) thresholding and NDVI-MDWI routine to create binary water masks and 

hydroperiod classification. Blue rectangles indicate SAR, orange rectangles indicate optical, and beige 

rectangles indicate Lidar steps. SAR processing steps and filter settings follow those recommended in [51]. 

2.4. Hydroperiod Frequency Analysis 

For comparative hydroperiod analysis, the Landsat TM/OLI water masks were divided into early and 

late time periods (T1 and T2) at the annual increment that produced the closest to an equal number of image 

mask samples, such that 1984 to 2002 (T1: 18 years, n = 30) was compared to 2003 to 2019 (T2: 16 years, n = 

31). The active season hydroperiod was constructed by adding all binary water mask layers and dividing 

the pixel values by the total number of images, then converting to a relative frequency value between 0 and 

100%. The percent frequency at any pixel location, therefore, represents the relative proportion of images 

that displayed open water at that location and is here assumed analogous to the long-term average seasonal 

hydroperiod, with 100% representing permanent open water and 0% representing areas of the floodplain 

that are rarely inundated. Note, 0% is here interpreted as “rarely” inundated, as from the temporal sampling, 

all that can be determined with confidence is that these areas of the floodplain were never inundated at the 

times of observation. Consequently, “rarely” inundated areas may be occasionally flooded or never flooded 

but, in either case, these are the floodplain areas that remain driest for the longest periods. 
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The hydroperiods for T1 and T2 were then compared on the basis of: (i) relative proportions of time for 

a given area of open water; and (ii) increases or decreases in permanent open water coverage. To explore 

the influence of river runoff on hydroperiod during the 35-year study period, regression analysis was 

performed between the open water area for each individual water mask and the average downstream river 

discharge observed for the day of image acquisition. As a cursory examination of potential climate change 

impacts on hydroperiod, river discharge and nearby climate variables of temperature and precipitation were 

summarized for T1 and T2 and compared to establish if any observed change in hydroperiod was consistent 

with observed or expected shifts in regional hydro-climatology. 

Using the 35-year Landsat TM/OLI hydroperiod as a baseline, the MSS and Radarsat 2 hydroperiods 

have been compared to evaluate the similarity of information content. Specifically, there are two elements 

of comparison: (i) the similarity in relative hydroperiod (i.e., temporal frequency) of open water area 

proportions; (ii) a visual comparison to assess the similarity in floodplain water feature definition. 

3. Results 

3.1. Long-Term Hydroperiod Comparison 

The Landsat TM/OLI floodplain hydroperiods along the stretch of the Upper Columbia River 

floodplain from Brisco to Spillimacheen for T1 and T2 are presented in Figure 4, with summary statistics in 

Table 1. Areas of permanent open water (floodplain ponds and river channel) are shown in the darkest 

shades and labelled with the 100% hydroperiod class. Visibly, the two hydroperiods are similar in terms of 

discernible major channel and open water pond features but, overall, T2 shows a slightly reduced open 

water frequency. This is more clearly illustrated in Figure 5, where the comparative hydroperiod open water 

area (as a percent of total floodplain) has been normalized to 10% hydroperiod quantile intervals in a GIS. 

(Note: the 0% and 100% hydroperiod represent the absolute observations of “no open water” and “always 

open water”, respectively, while all intermediate observation frequencies have been aggregated to 10% 

quantile intervals.) From the 20% to 100% observation frequency, T2 demonstrates a consistently reduced 

area of up to 3% of the floodplain extent (Figure 5). Meanwhile, T2 shows an almost 8% increase at the 0% 

observation frequency that represents areas of the floodplain that have not displayed any open water (rarely 

or never inundated) during the observation record (Table 1). (Note: “no open water” (0% frequency) 

observation statistics are presented to be complete and because any increase or decrease in area not 

experiencing seasonal inundation is of interest. However, unlike positive observations of open water in 

every image, which increase confidence in the permanence of open water, a consistent absence of observed 

open water does not mean that these areas were never inundated during the study period, as flood waters 

may cover an area for very short durations of hours or days and thus be missed in the image sampling.)  

Table 1. Hydroperiod summary statistics for T1, T2 and the entire 35-year record. Bracketed values represent 

the proportion of total floodplain extent. “Max open water” is the area associated with the single largest 

extent of floodplain inundation observed, while “No open water” refers to areas where no inundation has 

been observed across the entire record. 

 
Record Length 

(years) 

Number 

Images 

Permanent 

Water (km2) 

Max Open 

Water (km2) 

No Open 

Water (km2) 

T1: 

1984–2002 
18 30 3.78 (13.2%) 21.46 (74.9%) 4.36 (15.2%) 

T2: 

2003–2019 
16 31 3.18 (11.1%) 20.50 (71.5%) 6.59 (23.0%) 

1984–2019 35 61 2.78 (9.7%) 23.55 (82.2%) 4.21 (14.7%) 
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Figure 4. Landsat TM- and OLI-derived open water hydroperiod using NDVI-MNDWI threshold approach. 

(a) 1984–2002 (n = 30), and (b) 2003–2019 (n = 31). 

 

Figure 5. Comparative hydroperiod (open water area frequency) for T1 and T2 normalized to 10% quantile 

intervals. Floodplain area inundated (y axis) is presented as a percentage to illustrate the proportion of 

seasonal or permanent open water coverage relative to the total floodplain area. 

A reduction in permanent water extent (water bodies present in all observation records) as well as an 

increase in rarely inundated areas (not inundated within any observation records) from T1 to T2 is 
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discernible when the 100% and 0% hydroperiod areas are isolated and differenced (Figure 6 and Table 2). 

Note, by isolating “permanent” and “rarely inundated” in this way, all hydroperiods of 10% to 90% are 

grouped together as “seasonally inundated”. This is necessary, as we have high confidence that the end 

member regions of 100% and 0% frequencies do, in fact, correspond with continuous open water or no open 

water during the image observation samples. However, given the potential for noise in water masks, any 

pixels showing 10 to 90% have a greater potential to be influenced by omission or commission than the end 

members. Grouping these intermediate frequencies of open water into a single class therefore mitigates any 

error that could occur by directly comparing each hydroperiod frequency. Overall, 86.2% of the floodplain 

showed no change in its permanent, seasonal or non-inundated behaviour, with an 8.4% increase in rarely 

inundated areas adjacent to the edge of the floodplain and a decrease of 3.5% in permanent open water 

(Table 2). (Note, the 3.5% of floodplain area decrease represents a >16% reduction in the original permanent 

open water extent from T1). Water body shrinkage is most notable for two large ponds on either side of the 

floodplain and across several smaller ponds (red areas in Figure 6). While very small areas of “rarely 

inundated” loss (1.4%) and water body expansion (0.5%) are observed, these areas are non-contiguous and 

most likely represent noise or stochastic changes in floodplain land use and cover.  

Table 2. Change statistics for floodplain open water inundation as a proportion of total floodplain area 

between Brisco and Spillimacheen, BC. 

Change Direction Floodplain Class Area Change 

No change Seasonally inundated 61.8% 
 Permanent water body  9.7% 
 Rare or never inundated  14.7% 

Increase Permanent water body  1.4% 
 Rare or never inundated 8.4% 

Decrease Permanent water body  3.5% 
 Rare or never inundated 0.5% 

The deterministic nature of the floodplain hydroperiod is illustrated in Figure 7, where the observed 

area of each Landsat TM/OLI water mask from 1984 to 2019 (n = 61) is regressed against the average 

downstream river discharge on the same day. The regression result demonstrates that 87% of the variance 

in the water mask areas can be explained by Columbia River flow at Nicholson, and this is despite the 

discharge observation being ~65 km downstream of the case study location. Of note, this strong relationship 

is visibly linear, suggesting that the area of inundation scales linearly with discharge within the range of 

observations made. Peak flows tend to occur during July (Figure 2), so to ascertain if the relationship altered 

between the early season rising limb or late season falling limb of the river hydrograph (i.e., identify 

hysteresis in the relationship), the regression analysis was performed again for all water mask and discharge 

data up to the end of July (n = 26) and all observations following mid-July (n = 46). (Note, overlap in the 

sample is necessary to ensure that the regression slope captures both the rising and falling limb of seasonal 

discharge). In both cases, the regression results continued to be strong (R2 = 0.93 and 0.85, respectively) and 

slope remained invariant to within 3 s.f. at 0.035, suggesting that the open water area to discharge 

relationship holds throughout the hydrologically active season. 

The highest flow sampled during the TM/OLI time series was 560 m3s−1 on July 16 of 2002. This is well 

below the peak recorded daily average discharge during the study period of 743 m3s−1 (1 July 2002). 

However, there were only four events that exceeded 560 m3s−1 (in 2002, 2007 and 2012), accounting for less 

than 0.24% of all daily flows. Extrapolating this linear model (Figure 7) up to the peak discharge on record 

results in an area of inundation of 31.56 km2. This is 2.90 km2 greater than the geomorphologically 

constrained floodplain area, suggesting that at some high discharges, the area to discharge relationship will 

become non-linear and tend to flatten off, as floodplain water depths and/or flow velocities increase rapidly 
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to compensate for the minimal change in area. The discharge at which the floodplain area of 28.66 km2 is 

reached is 662 m3s−1. During the study period, this discharge was only exceeded during the single large flood 

event in July 2002 (noted above), so it is assumed that this model will hold for most discharges, except those 

associated with rare low frequency major flood events. 
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Figure 6. Hydroperiod change within the floodplain extent (black outline) illustrating regions of “permanent” 

(100% hydroperiod) water body (i.e., ponds and small lakes) expansion or loss or no change between T1 and 

T2, as well as areas where no inundation (0% hydroperiod) was observed across all 61 scenes. 

 

Figure 7. Floodplain area open water mask extent plotted against downstream river discharge on the day of 

image acquisition. 

3.2. Landsat MSS and Radarsat 2 Hydroperiod 

The hydroperiod images for Landsat MSS and Radarsat 2 are illustrated in Figure 8 alongside the 

differences with the long-term Landsat TM/OLI hydroperiod classes for visual comparison. Given the 

differences in resolution, sample frequency and time periods over which these hydroperiods were 

generated, they are not expected to be identical. However, a qualitative assessment confirms that all three 

hydroperiod approaches tend to agree in terms of major large permanent open water bodies, as well as there 

being some correspondence in many of the rarely or never inundated areas within the floodplain. Two 

distinct differences are apparent, however: (i) for the SAR hydroperiod image, the area of max or seasonal 

open water inundation is low and restricted to small buffers around permanent open water bodies, while 

the area of no observed open water is high (Figure 8, Table 3); (ii) for MSS, small ponds and river channel 

water features are not well represented.  

Notwithstanding the reduced sampling frequency and duration for Radarsat 2 and MSS, the general 

pattern (or signature) of hydroperiod behaviour across the floodplain is similar for all three methods, with 

a characteristic “U” shape that signifies that the seasonally inundated area quantile (10 to 90% observation 

frequencies) individually occupies less floodplain area than either permanent water bodies or rarely 

inundated areas (Figure 9). Moreover, the permanent water body areas (Table 3) are close to one another at 

~4 km2 and only slightly elevated relative to the temporally comparable TM/OLI permanent water body 

areas for T1 and T2 (Table 2). However, the systematic differences in open water feature visibility between 

TM/OLI and both Radarsat 2 and MSS result in an overall reduction in the observed area of inundation 

across the full hydroperiod frequency range (Figure 9). 
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Figure 8. (a) Radarsat 2 SAR-derived hydroperiod (2015–2019, n = 8). (b) Landsat 5 MSS-derived hydroperiod 

(1992–1995, n = 12). (c) Long-term Landsat TM/OLI hydroperiod classes (1984–2019, n = 61) compared to 

Radarsat 2. (d) Landsat TM/OLI hydroperiod classes compared to MSS. Note: “Different class” = open water 

hydroperiod class for Landsat TM/OLI and Radarsat 2 or MSS were not the same; “Rare or never inundated” 

= <10% observed water; “Seasonally inundated” = 10–90%; “Permanent water body” ≥ 90% open water. 
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Table 3. Hydroperiod summary statistics for Landsat MSS and Radarsat 2 (RS2). 

 

Record 

Length 

(Years) 

Number 

Images 

Permanent 

Water (km2) 

Max Open 

Water (km2) 

No Open 

Water (km2) 

MSS: 1992–1995 4 12 4.07 (14.2%) 14.94 (52.2%) 7.28 (25.4%) 

SAR (RS2): 2015–2019 5 8 3.93 (13.7%) 7.53 (26.3%) 14.50 (50.6%) 

 

Figure 9. Comparative hydroperiod (open water area frequency) for Landsat TM/OLI (n = 61), SAR (n = 8) 

and MSS (n = 12). (Note, the 0% hydroperiod frequency is not illustrated due to high variability across the 

three methods; see Tables 2 and 3). 

4. Discussion 

4.1. Long-Term Changes in Floodplain Wetland Hydroperiod 

Climate change simulations and studies of historical regional hydro-climatology [26–32,34–36,70] 

suggest tendencies towards regional warming, diminishing snow cover period, increasing rates of snowmelt 

and evaporation, earlier spring melt peak and lower late summer discharge. Empirical evidence from nearby 

long-term continuous meteorological (Cranbrook: ~150 km south) and downstream river discharge 

(Nicholson: ~65 km north-west) records are consistent with these findings and expectations. From Table 4, 

minimum, mean and maximum temperatures for the more recent T2 period have increased relative to the 

preceding period, while mean annual total precipitation has decreased. Little can be made of the drop in 

maximum discharge, which represents two single, very high flow events, but it is noteworthy that the 75th 

percentile in stream flow has also decreased slightly from T1 to T2, while the overall mean and lower quartile 

has increased. This observation of increased mean flows is consistent with more rapid snowmelt and 

potentially elevated glacial melt contributions [26–29]. However, slightly increased overall river flow 

volumes may initially appear contradictory to the reduction in hydroperiod (Figure 5) and the loss of 

permanent water bodies (Figure 6) observed in the Landsat TM/OLI record.  
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Table 4. Summaries of daily April to October temperature and total annual precipitation for Cranbrook, and 

daily Columbia River discharge at Nicholson for T1 (n = 4066 days) and T2 (n = 3638 days). * P25 and P75 

refer to the 25th and 75th percentiles (quartiles) of the long-term discharge record. 

 

Daily Temperature (°C) 
Precipitation 

(mm) 

Daily Discharge  

(m3s−1) 

Mean 

Min 

Mean 

Max 

Daily 

Mean 

Annual 

Mean 
Max Mean * P25 * P75 

1984–2002 0.12 11.85 6.00 395 743.0 156.1 56.4 237.0 

2003–2019 0.16 12.25 6.22 374 642.0 162.0 62.4 235.0 

Difference +0.04 +0.40 +0.23 -21 -101.0 +5.9 +6.0 -2.0 

A systematic shift towards higher flows during the spring melt period followed by lower flows in late 

July to early September is evident in Figure 10. Therefore, while mean flow may have increased and peak 

flow decreased, it appears that another important factor in the reduced active season hydroperiod behaviour 

during T2 is the small reduction in river flow during late summer, when evaporation rates are at their 

highest. A reduction in high summertime flows during late June to early August would inevitably lead to 

fewer late season overbank events, as well as reduced water exchange between the main river channel and 

floodplain wetlands via levee breaches and small feeder channels. This reduction in connectivity to runoff 

in the main channel during late summer means that the isolated and permanent water bodies in the 

floodplain likely would have been isolated for longer during T2 than T1. Due to the low hydraulic 

conductivity of floodplain substrates, most loss of water will be due to evapotranspiration. Given that 

temperatures increased and precipitation decreased in T2 (Table 4), it is reasonable to assume that the 

potential for floodplain evaporative loss was also greater during T2 than T1. These changes to the seasonal 

floodplain inundation regime, combined with enhanced losses to late season evaporation, may explain the 

observed decrease in permananent water bodies from T1 to T2 (Figure 6, Table 2). 

 

Figure 10. Mean daily discharge for the hydrologically active season (April to October) for T1 and T2. 

Increases or decreases in flow from T1 to T2 are illustrated for differences >5 m3s−1. 

4.2. Extending the Hydroperiod 
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To examine influences on floodplain hydroperiod over a longer time-scale where hydroclimatic 

changes may be greater or more readily discerned requires the use of lower resolution imagery that pre-

dates the Landsat Thematic Mapper mission. The Landsat Multispectral Scanner is an obvious choice due 

to instrument and acquisition similarities and the potential to extend the record by another 12 years to 1972. 

However, the reduced spatial resolution of the MSS image pixels (60 m width or 3600 m2 area) relative to 

TM/OLI (30 m or 900 m2) means that key pond and river channel water features in the floodplain were not 

clearly defined or were omitted altogether (Figure 8). In this part of the Columbia River floodplain, the main 

channel varies in width between approximately 30 and 40 m, which is why the majority of the main channel 

is visible as permanent open water in the TM/OLI hydroperiod (Figure 4), yet it either shows up as seasonal 

or not at all in the MSS hydroperiod (Figure 8). Consequently, MSS is well suited to hydroperiod generation 

in areas of slightly larger, more continuous water features, but if employed to extend the Landsat TM/OLI 

hydroperiod for floodplain areas similar to the Upper Columbia, then some cross-calibration of the 

hydroperiods over a common time-frame would be recommended. 

Continued open water monitoring and hydroperiod construction into the future can be achieved with 

OLI and many other optical satellite sensors but their primary drawback is cloud cover and the resultant 

inability to guarantee data on an as-needed basis. With new high spatial and temporal resolution SAR 

solutions like the Radarsat Constellation Mission [69], reliable repeat open water mapping and monitoring 

is one of the high-priority mission goals, with automated single polarization (HH) water mask and 

hydroperiod generation becoming routine tasks [50,51,62,71]. However, it is clear from Figures 8, 9 and 

Table 3 that the HH SAR hydroperiod properties are distinct from those from optical sensors, with the area 

of max or seasonal open water extent being comparatively low and restricted to small buffers around 

permanent open water bodies, while the area of apparent “dry land” is high. This can be attributed to side-

looking radar signals incident upon seasonally inundated water bodies where areas of emergent marshland 

vegetation will elevate the SAR backscatter intensity above the dB threshold for pure open water. 

Consequently, Radarsat-derived water masks are unlikely to produce equivalent hydroperiods to those 

from OLI, due to emergent marsh vegetation appearing “bright” within a slant range single polarisation HH 

SAR scene, yet largely invisible to nadir pointing optical sensors. Flooded vegetation can be identified using 

other SAR techniques such as polarimetry, which can help to solve this problem [59,71,72]. 

5. Conclusions 

Applying a NDVI-MNDWI index subtraction method [55] to a time series of Landsat TM and OLI 

satellite image data enabled the construction of a continuous hydroperiod map from 1984 to 2019 describing 

the seasonal and permanent open water characteristics of a section of the Upper Columbia River floodplain. 

The pattern of inundation over the floodplain wetland complex between Brisco and Spillimacheen was 

found to be deterministically related to the downstream river flow (R2 = 0.87, n = 61), a relationship that has 

clear potential for wetland vulnerability assessment should future runoff simulations become available. The 

floodplain hydroperiod characteristics of distinct permanent water bodies and rarely inundated areas either 

side of large areas of seasonal inundation are generally consistent across the TM/OLI early and late time 

periods, as well as the MSS and Radarsat 2 hydroperiod samples. The most notable divergence between the 

early (1984 to 2002) and the latter (2003 to 2019) hydroperiod character is the ~16% loss of permanent open 

water (3.5% change in total floodplain area), which corresponds with earlier annual spring melt and peak 

flows combined with reduced late season flows and enhanced evaporative loss. These observations in the 

historical record are consistent with expectations for a changing regional climate and suggest that 

permanent and seasonal open water areas may continue to diminish and thus increase wetland 

vulnerability. While Radarsat Constellation Mission hydroperiods will be distinct to those derived from 

optical sources, it is recommended that floodplain wetlands considered vulnerable to changing climates be 

the subject of high temporal resolution monitoring to track changes in open water hydroperiod and thus 

provide an early warning of imminent loss of wetland ecosystem services. 
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